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SUMMARY 

A numerical study of the effects of viscous-inviscid inter- 

action in three-dimensional duct flows is presented. In particu- 

lar we consider interacting flows for which the oncoming flow is 

not fully-developed. In this case there is a thin boundary layer 

still present upstream of the of the surface distortion, as 

opposed to the fully-developed pipe flow situation wherein the 

flow is viscous across the entire cross section. 
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1. INTRODUCTION 

There exist several reliable methods ( e . g .  Vatsa b Davis 

1973, Blottner 1975, Cebeci, Kaups & Hamsey 1977, McLean b 

Randall 1979, Lindhout, Moek, Deboer e( van der Berg 1979) for 

calculating standard (or direct) three-dimensional boundary-layer 

flows with the pressure prescribed. However, such methods are 

seldom useful in real flow5 because of the classical separatiorr 

singularity, among other things. Instead viscous-inviscid inter- 

action generally occurs with both the pressure and the boundary- 

layer displacement unknown in advance, just as in two-dimensional 

flows. 

Smith (19831 has studied the properties of, and a finite- 

difference approach for, interactive three-dimensional boundary 

layers in external flow problems. HE found that, contrary to the 

results of two-dimensional interactions, the three-dimensional 

inverse problem is an elliptic one and therefore standard foward- 

marching in the flow direction, e . g .  through cross-flow planes, 

is strictly inappropriate/dangerous because an explosive 3-D free 

interaction can be initiated. The same phenomena can take place 

in the interactive case, or whenever the pressure is not de- 

scribed. To overcome these problems, Smith (1983) and Edwards, 

Carter, b Smith (1987) developed an unconventional finite- 

difference approach for the external three-dimensional inverse 

and triple-deck problems which addresses the major numerical 

difficulties of ellipticity and violent three-dimensional free 

interactions which are inherent in the standard foward-marching 

schemes. In this paper the numerical scheme developed by Smith 
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for three-dimensional interactive flows is generalized to include 

three-dimensional internal flows with viscous-inviscid inteFac- 

tion, such as in a transition duct. M o r e  specifically, w e  study 

the interactive flow field present in a duct when the oncoming 

flow is not yet fully-developed, i.e., in those situations where 

the entry length isn't long enough for the flow to become fully- 

developed. In these cases there will still be a "thin" boundary 

layer on the wall of  the duct and hence the possibility of 

viscous-inviscid interaction in the vicinity of the surface dis- 

tortion with a nonzero incremental displacement thickness 

function, k ( x , 8 ) .  
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2. GOVERNING EOUATIONS 

F o r  a d e v e l o p i n g  f l o w  i n  t h e  geometry  shown s c h e m a t i c a l l y  i n  

F igu re  1, it c a n  b e  shown, +allowing Smi th  (19761, t h a t  t h e  f l o w  

s t r u c t u r e  is t h r e e - t i e r e d ,  c o n s i s t i n g  of  a v i s c o u s  s u b l a y e r  I of  

t h i c k n e s s  O ( R e - 2 / 5 ) ,  a main deck I 1  

which is a n  i n v i s c i d  r o t a t i o n a l  p e r t u r b a t i o n  of t h e  incoming 

boundary - l aye r  f l o w ,  and a p o t e n t i a l  core r e g i o n  I 1 1  of t h i c k n e s s  

0(1), where R e  = a*U*//V is a r e p r e s e n t a t i v e  Reynolds  number b a s e d  

on  t h e  r a d i u s  a' of a s t r a i g h t  p i p e  of c i r c u l a r  cross s e c t i o n ,  

t h e  c e n t e r l i n e  v e l o c i t y  UK i n  t h e  oncoming f l o w ,  and t h e  f l u i d ' s  

k i n e m a t i c  v i s c o s i t y ,  V. Fur thermore ,  w e  assume t h a t  t h e  d i s t u r -  

b a n c e  ( e . g .  c o r n e r ,  hump, i n d e n t a t i o n ,  etc) s i z e  is of t h e  t a m e  

o r d e r  of magnitude as t h e  p e r t u r b a t i o n  t o  t h e  oncoming s h e a r  

f low.  U n l i k e  m o s t  p roblems i n v o l v i n g  v i ~ , c o u s - i n v i s c i d  i n t e r a c -  

t i o n s ,  t h e  problem c o n s i d e r e d  h e r e  r e d u c e s  t o  a c o n s i d e r a t i o n  of  

t h e  e q u a t i o n s  of motion i n  t h e  v i s c o u s  s u b l a y e r  I and t h e  o u t e r  

core r e g i o n  111. Thus i n  I w e  l e t  

of t h i c k n e s s  O ( R e - 1 ' 5 ) ,  

r = 1 - Re-2/5 , Y = 0(1), x = 0(1) ,  0 = O ( 1 )  

* 
u ( r , 8 , X )  = Re- ' / 'U(Y,B,X)  + ... , 
;(r,e,X) = R e - 3 / 5 V ( Y , 0 , X )  + .*.. , 
Zr(r,e,X) = R ~ - ~ / ~ w ( Y , B , x )  + .'.. , 
b t e , ~ )  = ~ e - ' / 5 ~ ( 0 , ~ )  + ... , 

where  ( r , 0 , X )  are s u i t a b l y  nondi rnens iona l ized  c y l i n d r i c a l  p o l a r  

c o o r d i n a t e s ,  (v,w,u) t h e  c o r r e s p o n d i n g  v e l o c i t y  components  and  6 
t h e  nondimens iona l  p r e s s u r e .  Then it is r e a d i l y  shown t h a t  i n  

r e g i o n  I t h e  Navier -S tokes  e q u a t i o n s  r e d u c e  t o  t h e  t h r e e -  

d i m e n s i o n a l  boundary-layer  e q u a t i o n s ,  v i z :  

* * *  

(2-1) 
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ux + vy + we = 0 

uux + vuy + wug = -Px + U y y ,  

uwx + vwy + wwe = -Pg + w Y Y '  

(2-2) 

(2-3) 

(2-4 1 

with boundary conditions 

U = V = W = 0 on Y = F ( X , 8 ) ,  (2-5) 

where F ( X , 8 )  is a suitably normalized wall shape function such 

that F -+ 0 a5 X + -m, and F ( X , * 2 L )  = F ( X , 8 ) ;  

U ( Y , B , X )  -+- Y ,  V,W,P,A i 0, as x i -w, 

and 

U + Y + A ( X , 8 ) ,  Y + m, all X ,  

W x  + - P e / ( Y + A ) ,  Y --3 m, all X ,  

(2-6) 

and periodicity in 8. 

Here (2-5) corresponds to the no-5lip condition, (2-6) corre5- 

ponds to matching with the upstream incident flow, and (2-7) 

results from a matching of the boundary-layer flow in I t o  the 

inviscid rotational flow in region 11. The function - A ( X , 8 )  

represents the unknown incremental displacement thickness and is 

linked to the unknown pressure P(X,0) by means of the quasi- 

inviscid properties in the core flow 111. 

In the core region we must solve +or P i n v ( r , t 3 , X ) ,  where 

(2-9) Y $Pi nv = 0, 

along with the boundary condition& 

Pinv = P ( X , e )  Q r = 1, 

(Pinv)r = -AXX Q r = 1, 

regularity at r = 0 .  

(2-10) 

Finally, to facilitate the numerical computations the 

governing equations in the viscous sublayer are rewritten using 

Prandtl's transposition theorem, viz 
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Then equations (2-2) - (2-4) become 

uX + v + We = 0, 

Y 

Y 

Y 
- I  uux + vu + wue = -px + uyy, 

uw;< + vw + WW6 = -Po + wyy, 

with boundary conditions 

(2-1 1) 

(2-12) 

(2-13) 

(2-14) 

(2-15) 

(2-16) 

(2-17) 

u * y, v,w,p,A + 0, x -3- -M, all y, (2-18) 

and periodicity in Er. 

A s  noted by Smith (1976,1980) these equations are elliptic 

in the pressure field and therefore require a modification of the 

multi-sweep forward-marching methods developed successfully for 

two-dimensional flow problems. In the present work the ellip- 

ticity embedded in the pressure field needs special attention for 

otherwise an explosive 3D free interaction can be set off in a 

forward-marching procedure. ConsYder the 5um of the x-derivative 

of (2-131, the y-derivative of (2-14) and the x-derivative of (2- 

12). then defining the skewed shears in the following manner: 

- - 
U = Ux + W e ,  V = Vx, (2-19) 

the fundamental governing equations can be written as 

- 
ux + Gw = 0, 

where 
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. 

s(x,y,e) = t$ + vu,y + (wu6)x + u6wx 

+(vwy)6 + (WWe)eg (2-22 1 

and 
Y 

E = P,x + Pee' (2-23) 
- 

In these equstions U, v, and E are treated as the unknowns and 

the following boundary conditions are applied 

(2-24) 

(2-25 1 

- - 
u = v = O B y = O ,  all x ,  

U, V, E + 0, -X + W, 

u * (A+F) , ,  C+E + u(A+F),, - (A,+F,)', y 3 W, all X .  

- -  
I 

(2-26) 

Note that in these variables the governing equations (2-20) - (2- 

21) are quasi two-dimensional and linear in the unknown 

var i ab1 es. 

In the core region, 111, w e  m u s t  solve 

(2-27 1 7 t r E  = E,, + r - 'Er  + r-'E6@ + E,, = 0, 

where 

E ( x , r , 8 )  = P,, + Pee (2-28) 

with - 
E ( x , 6 )  = E ( x , 1 , 8 ) ,  (2-25') 

and 

E ( x , r , 8 )  bounded as r + 0. (2-30) 

In the numerical computations w e  find it convenient to 
f 

introduce an alternative variable to the displacement function 

A ( x , 8 ) ,  namely E ( % , € ) ) ,  where 

E ( x , 8 )  = A x x .  (2-31 1 

The (key) matching relationship is then given by 

E r ( x , I , 8 )  = - (Exx  + E e e ) -  (2-32 1 

W e  also find it convenient to rewrite (2-26) somewhat, using 
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(2-31) together with (2-161, to give 

x - 
u * I Bdx + F,, 

-m 
( 2-33) 

(2-34) 

as y + M for all x ,  8. 

For convenience, s y m m e t r y  about the plane 6 = 0 was taken 

with reflection conditions (u,v,w,p) (x , -y ,8 )  = Cu,v,-w,p) ( x , y , e ) ;  

t o  account for periodicity, reflection conditions were also 

applied at 6 = L,  for s o m e  c o n s t a n t  L. 

f 
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3. NUMERICAL PROCEDURE 

The n a t u r e  of  t h e  boundary-layer  problem d e s c r i b e d  above  

s u g g e s t s  a n  i t e r a t i v e  multi-sweep t e c h n i q u e ,  u s i n g  f o r w a r d  march- 

i n g  i n  a q u a s i  two-dimensional manner t o  s o l v e  f o r  U, V and E 

w i t h  u,  w ,  and  S assumed known from t h e  p r e v i o u s  i t e r a t i o n  (or a n  

i n i t i a l  g u e s s ) .  S i m u l t a n e o u s l y ,  w e  u s e  s t a n d a r d  c e n t r a l  d i f f e r -  

e n c e s  i n  order t o  s o l v e  (2-27). 

S p e c i f i c a l l y ,  g i v e n  a que55 or u p d a t e  f o r  u,v,w and  t h e r e -  

fore S eve rywhere ,  (2-20) - (2-211, (2-24) - (2-26), are marched 

forward i n  x ,  w h i l e  a t  t h e  same t i m e  (2-271, (2-29), (2-30) are 

s o l v e d  a l o n g  a l i n e  of v a r y i n g  r; t h i s  t h e n  d e t e r m i n e s  G,V,E,E,B 

(and ,  h e n c e  A )  a l o n g  a l i n e  of c o n s t a n t  s p a n w i s e  c o o r d i n a t e .  The 

p r o c e s s  is t h e n  r e p e a t e d  a t  a l l  o t h e r  s p a n w i s e  c o o r d i n a t e s .  N e x t  

t h e  s u r f a c e  p r e s s u r e  p(x , (3 )  is found f rom t h e  P o i s s o n  e q u a t i o n  

(2-33). Updated v a l u e s  of w a r e  found n e x t  by marching  (2-14) 

f o r w a r d  i n  x f o r  e a c h  8,  s u b j e c t  t o  (2-15) - (2-171, assuming 

t h a t  u , v , p  and we are known, 

are found  by a n  i n t e g r a t i o n  of (2-19) w i t h  r e s p e c t  t o  x a l o n g  

w i t h  (2-15) and (2-16). A l l  t h e  above  s t e p s  c o n s t i t u t e  o n e  

global i t e r a t i o n .  Convergence is a t t a i n e d  when a g l o b a l  conver- 

g e n c e  test on u is s a t i s f i e d .  

F i n a l l y  upda ted  v a l u e s  of u and v 

E 

The main f e a t u r e s  of t h e  numer i ca l  scheme are t h e  f o l l o w i n g .  

Two and  t h r e e - p o i n t  d i f f e r e n c i n g  i n  y is used  f o r  (2-20) and (2- 

21) ,  r e s p e c t i v e l y ,  w i t h  (2-26) a p p l i e d  a t  y = y,, two-point  

d i f f e r e n c i n g  i n  x and t h r e e - p o i n t  d i f f e r e n c i n g  i n  8 when S is 

e v a l u a t e d ,  a t  a g i v e n  x , 8  l o c a t i o n .  T h i s  scheme r e f l e c t s  t h e  

f ac t  t h a t  t h e  f l o w  is g e n e r a l l y  p a r a b o l i c  i n  x b u t  e l l i p t i c  i n  y. 
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Three-point cen t ra l  d i f ferenc ing i s  used t o  approximate (2-27) i n  

a l l  th ree  dimensions , and (2-32) i s  approximated by three-point 

one-sided di f ferencing. Supposing w e  have n po in ts  i n  y, m po in ts  

i n  r, then a t  each x , 8  s t a t i o n  the  d i f fe rence approximation o f  

(2-20) , (2-21) and (2-27), together w i t h  the i n te r face  condi t ions 

(2-32) - (2-331, may be wr i t ten  schematically i n  the fo l low ing  

form (where an X denotes a non-zero en t ry  and 0 a zero ent ry) :  

x x o o  
x x x x  
x x x x o o  
x x x x x x  

xxxxoo 
x x x x x x  

xxxxoo 
xxxxxx  

( 2-20) 
(2-21 1 
(2-20) 
(2-34) 
(2-33 
(2-32 ) 
( 2-27 
(2-27 

(2-27 ) 
(2-27) 

0 
X 
0 
X 
0 
X 
0 
X 

xx  x xoooo 
x xx  x xxox 

xxxxoo 
xoxx 

x x o  
x x x x  

x x x  
xxx  

(2-20 
(2-21 
(2-20 
(2-21 
( 2-20 
(2-21 
(2-20 ) 
(2-21 1 

... . 
- 

x x x o  
x x  

(3-1 

H e r e  equation numbers denoteYthe equation which the  r o w  

approximates. Notice t h a t  

- - 
v ~ = u ~ = O ,  E , = O .  (3-2) 

The s o l i t a r y  column of ent r ies i n  the upper p a r t  of t he  

matr ix corresponds t o  the E t e r m  i n  (2-21). (3-1) i s  then amen- 

ab le t o  standard Gaussian e l iminat ion procedures. (2-331, which 

determines the  surface pressure, wa5 a lso approximated by cen t ra l  
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dif f erences, and was solved by Gauss-Seidel sweeps (without 

pivoting), with an over-relaxation parameter until a prescribed 

tolerance is met. The solution f o r  w is similar to that for U 

and V except that only a tri-diagonal matrix requires inversion 

(performed again using Gaussian elimination). Finally the x- 

integrations to compute u and v were performed using the trape- 

zoidal rule. The overall scheme is nominally second-order accur- 

ate in the mesh widths A x ,  Ay, A6, and br .  

4 crucial feature of the scheme developed as parrt of this 

research effort in the inherent coupling between the viscous 

boundary-layer solution and the inviscid core solution which is 

carried out simultaneou5ly in the spirit of the scheme proposed 

by Veldman (1979) in treating two-dimensional incompressible 

flows, using the Hilbert integral approach. This approach has 

also recently been used by Bodonyi & Duck (1987) to succesfully 

treat three-dimensional external interacting flows. 

1 0  



4. RESULTS 

The numerical method discussed in the previous section has 

been applied to several test problems. The model problem 

corresponds to that of a nonfully-developed flow upstream of the 

surface distortion given by a bounded transition duct with F(x,8) 

and h ranging between 0.6 and 3.2. 

In this case the duct undergoes a transition from that of a 

circular cross section duct far upstream to that of an elliptical 

cross section far downstream, a5 shown schematically in Figure 2. 

Solutions for the fully developed flow problem upstream of 

the surface distortion wherein A(x,8) = 0 have also been found 

for the same duct shape. ince the solutions for both of these 

problems are qualitatively similar, only the results for the 

interactive case are given here. Figures 3 -7 give the axial 

and azimuthal skin friction distributions and the wall pressure 

distribution along the line of symmetry f o r  several values of h. 

No flow reversal wa5 encountered in the axial direction for 

values of h considered in this report, although the azimuthal 
S 

skin friction w does exhibit a reversal of sign sufficiently 

far downstream for h > 1. All efforts to extend the computations 
Y 

to larger values of h such that axial flow reversal occured were 

unsuccessful. The difficulties in obtaining solutions for h > 
3.2 are apparent in the pressure distribution shown in Figure 7. 

A possible reason for this is that the governing equations are 
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treated in a quasi-two-dimensional forward marching manner which 

may not properly account for the transverse velocity component 

when it becomes sufficiently large as in the bounded transition 

duct'when h > 3.2. Unfortunately, within the time frame of this 

research effort this difficulty w a s  not resolved. 

A numerical study of noncircular incident ducts has also 

been considered. In this case the incident skin friction depends 

on 8,  e.g. parallel flow through an ellipse. The governing 

equations are the same as before except that now the outer 

boundary condition (2-16) is replaced by 

u + h(8)Iy + A ( x , ~ )  + F ( x , 8 ) 3 .  (4-2) 

Here the parameter h(8) gives the azimuthal distribution of the 

incoming shear flow in the viscous sublayer u = h ( 8 )  y. 

The numerical scheme discussed above has been adapted to 

include this effect and representative results for the skin 

friction distributions when & ( x , e )  = 0 and F(x,B)is given by (4- 

1) are shown in Figure 8 for h = 2 and h ( 8 )  = 0.25 + sinz€). 

Finally, as part o+ this research effort similarity 

solutions f o r  x 4 M of equations (2-12) - (2-18) for an 
"unbounded" transition body shape of the form 

(4-3) F ( x , e )  X 1 4 0 ~ ( 2 e )  f 

have been investigated with the gbal of gaining a better 

understanding of the flow structure far downstream in the duct. 

By expanding in powers of e, the governing equations can be 

reduced to a set of ordinary differential equations, but in the 

process several undetermined parameters are introduced. It was 

found that the appropriate similarity equations permit multiple 

solutions, as well a5 regions in parameter space where no 

12 



s o l u t i o n s  c o u l d  b e  found depending on t h e  r a n g e  of values of t h e  

parameters  mentioned above.  For f u r t h e r  d e t a i l s  c o n c e r n i n g  t h e s e  

s i m i l a r i t y  e q u a t i o n s ,  t h e  i n t e r e s t e d  r e a d e r  is r e f e r r e d  t o  

Bennet t  (1986) who s t u d i e d  t h e s e  s i m i l a r i t y  e q u a t i o n s  i n  another  

c o n t e x t .  

Y 
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Figure 8.. (a) Axial and .(b) azimuthal skin friction distributions for 
a variable incident skin friction duct flow. 


